June 11, 2014

Ford, Samsung Research Next-Generation Battery Technology


Ford Motor Company and Samsung SDI, an affiliate of Samsung Group,announced research on different levels of hybrid technology that could one day be produced in high volume on non-hybrid vehicles for greater fuel savings.

The result of a 10-year research effort, the dual-battery system combines a lithium-ion battery with a 12-volt lead-acid battery that could enable regenerative braking technology in non-hybrid vehicles for greater fuel savings.

“We are currently expanding our Auto Start-Stop technology across 70 percent of our lineup, and this dual-battery system has the potential to bring even more levels of hybridization to our vehicles for greater energy savings across the board,” said Ted Miller, senior manager, Energy Storage Strategy and Research, Ford Motor Company. “Although still in research, this type of battery could provide a near-term solution for greater reduction of carbon dioxide.”

Currently available on Ford’s hybrid vehicles, regenerative braking enables the battery to capture up to 95 percent of the electrical energy normally lost during the braking process for reuse. The system works in conjunction with Ford’s Auto Start-Stop, which seamlessly turns off the engine when a vehicle stops to save fuel. An advanced battery then powers vehicle accessories and systems in place of the engine until the driver begins to release the brake pedal, which restarts the engine.

Ford and Samsung SDI also are researching a longer-term ultra-lightweight lithium-ion battery that could one day render traditional lead-acid batteries obsolete. The research advances lithium-ion battery technology currently available on Ford’s electrified vehicles.

“Lithium-ion batteries are typically used in consumer electronics because they are lighter and more energy-dense than other types of batteries, which also make them ideal for the vehicle,” said Mike O’Sullivan, vice president, Automotive Battery Systems for Samsung SDI North America. “Battery technology is advancing rapidly and lithium-ion could one day completely replace traditional 12-volt lead-acid batteries, providing better fuel efficiency for drivers.”

Lithium-ion batteries currently used in Ford’s electrified vehicles are 25 percent to 30 percent smaller than previous hybrid batteries made of nickel-metal-hydride, and offer approximately three times the power per cell.

The ultra-lightweight battery concept offers a weight reduction of up to 40 percent, or 12 pounds. Combining the battery with other weight reduction solutions, such as the Ford Lightweight Concept vehicle, could lead to additional savings in size and weight of the overall vehicle, as well as increased efficiencies and performance.

Ford has supported battery research for 100 years, dating back to Henry Ford and Thomas Edison’s work on electric vehicles employing nickel-iron batteries as a replacement for lead-acid batteries.

Last year, the company invested $135 million in design, engineering and production of key battery components, and doubled its battery testing capabilities. Ford accelerated its battery durability testing, with test batteries now accumulating the equivalent of 150,000 miles of use and 10 years’ life in roughly 10 months in a laboratory setting.

Ford has directly supported several energy storage companies in California in their technology development through the United States Advanced Battery Consortium. Further, Ford supports energy storage research at Lawrence Berkeley National Laboratory, University of California, Berkeley, and Stanford. The company has provided significant support to, and been closely involved with, advanced energy storage technology development in California for several decades, with some technologies applicable for other uses, including grid-scale energy storage.

No comments:

Post a Comment

Feel free to comment or share your views. Comments that are derogatory and/or spam will not be tolerated. We reserve the right to moderate and/or remove comments.